C o m m e n t a r y4 3 (17), suggesting that one or more genes on chromosome 21 contributes to HSCR etiology. Up to 10% of children with HSCR have Down syndrome, and 1% to 2% of children with Down syndrome have HSCR. Thus, Down syndrome increases HSCR risk about 50-to 100-fold above the general population risk (~1:5,000) and is a common underlying partially penetrant cause of HSCR (4).Over the past few decades there have been dramatic advances in our understanding of HSCR anatomy, embryology, physiology, and genetics (4,5,18). Early studies by Yntema and Hammond showed that the ENS forms from enteric neural crestderived cells (ENCDCs) that originate primarily in the vagal region of the neural tube (19). These ENCDCs proliferate vigorously as they colonize fetal bowel in a rostral to caudal progression, pursuing one of the longest migratory routes of any cell population during fetal development ( Figure 1A). ENCDCs then differentiate into diverse neuron and glia subtypes that form a network in the bowel wall with about as many neurons as the spinal cord and every transmitter in the central nervous system (3, 18). Despite these advances in our understanding of ENS development, the causal link between trisomy 21 and increased HSCR incidence has remained elusive. Analysis of partial trisomy 21 phenotypes suggested that an extra copy of at least one gene in the interval from 33.5 to 46.25 Mb increased HSCR risk (20). This interval contains 122 known genes, including DSCAM, BACE2, COL18A1, and COL6A1. A recent SNP association study suggested that excess DSCAM may be important for HSCR pathogenesis in Down syndrome, but excess DSCAM has not been confirmed experimentally to cause HSCR-like disease in model systems (21).
Unbiased approach to identify genes critical for ENS developmentIn this issue, Soret and colleagues took an unbiased, forward genetics approach and used insertional mutagenesis to identify potential regulators of neural crest-derived cell (NCC) migration (22). To simplify the screening process, Soret et al. randomly inserted a tyrosinase (Tyr) minigene, which rescues pigment production in NCCderived melanocytes, into albino FVB/N mice and then evaluated animals with nonuniform pigment patterns. Because melanocytes and the ENS are both neural crest derivatives, some mice with pigmentation defects were also expected to have ENS defects, mimicking the human "neurocristopathy" called Waardenburg-Shah syndrome (Waardenburg syndrome type Hirschsprung's disease (HSCR) causes functional intestinal obstruction due to the absence of the enteric nervous system (ENS) in the distal bowel and is usually diagnosed shortly after birth or during childhood. While several genetic and nongenetic factors have been linked to HSCR, the underlying mechanisms that prevent ENS precursors from colonizing distal bowel during fetal development are not completely understood in many affected children. In this issue of the JCI, Soret and colleagues identify a new mechanism that causes HSCR-like disease in mice and involves deposition o...