Hirschsprung's disease (HSCR) is a severe congenital anomaly of the enteric nervous system (ENS) characterized by functional intestinal obstruction due to a lack of intrinsic innervation in the distal bowel. Distal innervation deficiency results from incomplete colonization of the bowel by enteric neural crest cells (eNCCs), the ENS precursors. Here, we report the generation of a mouse model for HSCR--named Holstein--that contains an untargeted transgenic insertion upstream of the collagen-6α4 (Col6a4) gene. This insertion induces eNCC-specific upregulation of Col6a4 expression that increases total collagen VI protein levels in the extracellular matrix (ECM) surrounding both the developing and the postnatal ENS. Increased collagen VI levels during development mainly result in slower migration of eNCCs. This appears to be due to the fact that collagen VI is a poor substratum for supporting eNCC migration and can even interfere with the migration-promoting effects of fibronectin. Importantly, for a majority of patients in a HSCR cohort, the myenteric ganglia from the ganglionated region are also specifically surrounded by abundant collagen VI microfibrils, an outcome accentuated by Down syndrome. Collectively, our data thus unveil a clinically relevant pathogenic mechanism for HSCR that involves cell-autonomous changes in ECM composition surrounding eNCCs. Moreover, as COL6A1 and COL6A2 are on human Chr.21q, this mechanism is highly relevant to the predisposition of patients with Down syndrome to HSCR.
Muscle explants myenteric neural ganglion WT-like neural ganglia, colon function and microbiota inflammed submucosa disrupted epithelial barrier thicker muscles dysbiosis Untreated Hirschsprung mouse GDNF-treated Hirschsprung mouse Wild type mouse P20 distal colon no enteric nervous system, megacolon, premature death Mouse models of Hirschsprung disease exogenous GDNF P20/P56 enema P4 P8 P0 e n d o g e n o u s G D N F hypertrophic extrinsic nerve with Schwann cells submucosal neural ganglion People with Hirschsprung disease resected aganglionic colon enteric neuron +GDNF ctl extrinsic nerve and Schwann cells +GDNF ctl nervous system regeneration, WT-like colon function, survival
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.