This paper addresses a number of problems concerning Buekenhout-Tits unitals in $${{\,\textrm{PG}\,}}(2, q^2)$$
PG
(
2
,
q
2
)
, where $$q = 2^{2e + 1}$$
q
=
2
2
e
+
1
and $$e \ge 1$$
e
≥
1
. We show that all Buekenhout-Tits unitals are equivalent under $${{\,\textrm{PGL}\,}}(3, q^2)$$
PGL
(
3
,
q
2
)
[addressing an open problem in Barwick and Ebert (Unitals in Projective Planes. Springer Monographs in Mathematics. Springer, New York, 2008)], explicitly describe their stabiliser in $$\textrm{P}\Gamma \textrm{L}(3, q^2)$$
P
Γ
L
(
3
,
q
2
)
[expanding Ebert’s work in Ebert (J Algebraic Comb 6(2):133–140, 1997)], and show that lines meet the feet of points not on $$\ell _{\infty }$$
ℓ
∞
in at most four points. Finally, we show that feet of points not on $$\ell _{\infty }$$
ℓ
∞
are not always a $$\{0, 1, 2, 4\}$$
{
0
,
1
,
2
,
4
}
-set, in contrast to what happens for Buekenhout-Metz unitals Abarzúa et al (Adv Geom 18(2):229–236, 2018).