2023
DOI: 10.1007/s10618-023-00937-5
|View full text |Cite
|
Sign up to set email alerts
|

A combinatorial multi-armed bandit approach to correlation clustering

Abstract: Given a graph whose edges are assigned positive-type and negative-type weights, the problem of correlation clustering aims at grouping the graph vertices so as to minimize (resp. maximize) the sum of negative-type (resp. positive-type) intra-cluster weights plus the sum of positive-type (resp. negative-type) inter-cluster weights. In correlation clustering, it is typically assumed that the weights are readily available. This is a rather strong hypothesis, which is unrealistic in several scenarios. To overcome … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 27 publications
0
0
0
Order By: Relevance