Online socio-technical systems can be studied as proxy of the real world to investigate human behavior and social interactions at scale. Here we focus on Instagram, a mediasharing online platform whose popularity has been rising up to gathering hundred millions users. Instagram exhibits a mixture of features including social structure, social tagging and media sharing. The network of social interactions among users models various dynamics including follower/followee relations and users' communication by means of posts/comments. Users can upload and tag media such as photos and pictures, and they can "like" and comment each piece of information on the platform. In this work we investigate three major aspects on our Instagram dataset: (i) the structural characteristics of its network of heterogeneous interactions, to unveil the emergence of self organization and topically-induced community structure; (ii) the dynamics of content production and consumption, to understand how global trends and popular users emerge; (iii) the behavior of users labeling media with tags, to determine how they devote their attention and to explore the variety of their topical interests. Our analysis provides clues to understand human behavior dynamics on socio-technical systems, specifically users and content popularity, the mechanisms of users' interactions in online environments and how collective trends emerge from individuals' topical interests.
Respiratory diseases are among the most common causes of severe illness and death worldwide. Prevention and early diagnosis are essential to limit or even reverse the trend that characterizes the diffusion of such diseases. In this regard, the development of advanced computational tools for the analysis of respiratory auscultation sounds can become a game changer for detecting disease-related anomalies, or diseases themselves. In this work, we propose a novel learning framework for respiratory auscultation sound data. Our approach combines state-of-the-art feature extraction techniques and advanced deep-neural-network architectures. Remarkably, to the best of our knowledge, we are the first to model a recurrent-neural-network based learning framework to support the clinician in detecting respiratory diseases, at either level of abnormal sounds or pathology classes. Results obtained on the ICBHI benchmark dataset show that our approach outperforms competing methods on both anomaly-driven and pathology-driven prediction tasks, thus advancing the state-of-the-art in respiratory disease analysis. arXiv:1907.05708v1 [eess.AS]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.