In the power distribution system of South Korea, the sectionalizer minimizes and recovers the system from failures, and prohibits independent operation of distributed energy resources. Therefore, it is difficult to expect reliability improvements owing to a photovoltaic system in the power distribution system. Herein, we propose a reliability-centered maintenance-scheduling method based on an economic analysis of photovoltaic integration facilities to ensure the economic feasibility of the photovoltaic system operator and the reliability of the power distribution system. Photovoltaic integration facilities are divided into two categories based on their spread of the failure, and the maintenance scheduling is evaluated according to the maximum and minimum losses according to the time of failure. Facilities that cause power outages to photovoltaics and to loads have relatively little effect on the time of failure. This is because the effects of the power outages in the loads predominate. In contrast, facilities that only cause photovoltaic outages are affected by the generation time. In particular, insulated gate bipolar transistors that operate only during photovoltaic generation have been found to be more economical for corrective replacement than preventive replacement.