Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Dihydrofolate reductase (DHFR) is an enzyme that plays a crucial role in folate metabolism, which is essential for cell growth and division. DHFR has been identified as a molecular target for numerous diseases due to its significance in various biological processes. DHFR inhibitors can disrupt folate metabolism by inhibiting DHFR, leading to the inhibition of cell growth. So, a series of caffeic acid derivatives were designed, synthesized, characterized and evaluated for their in vitro ability to inhibit DHFR, as well as their antimicrobial and anticancer properties. Among all synthesized compounds, compound CE11 exhibited the highest DHFR inhibitory activity, with an IC 50 value of 0.048 µM, which is approximately four times more potent than methotrexate. Compound CE11 exhibited similar docking performance to methotrexate, binding to the same site and engaging key residues such as Glh30, Phe31, Phe34, and Ser59. It also fit snugly in the hydrophobic pocket of modeled protein. Moreover, substantial hydrophobic interactions were noted between the ligand and the hydrophobic amino acid residues of DHFR. This effectively secured the derivative within the restricted substrate cavity. Furthermore, compound CE11 demonstrated a significant anticancer activity against MCF-7 breast cancer cell line, with an IC 50 value of 5.37 ± 0.16 µM. Compounds CE3 and CE15 displayed better antibacterial activity compared to trimethoprim and comparable to ampicillin against the gram-positive bacteria S. aureus . Moreover, compounds CE3 and CE15 have shown better antibacterial activity than standard trimethoprim, ampicillin and tetracycline against the gram-negative bacteria, particularly P. aeruginosa and E. coli . Molecular docking analysis of CE3 revealed that it firmly entrapped into the active site of enzyme through hydrophobic interaction with hydrophobic residues. Additionally, it forms hydrogen bonds with important amino acid residues Ala7, Asn18, and Thr121 with excellent docking score and binding energy (-9.9, -71.77 kcal/mol). These interactions might be contributed to the significant DHFR inhibition and antimicrobial activity. The generated model holds potential value in facilitating the development of a novel category of DHFR inhibitors as anticancer and antimicrobial agents.
Dihydrofolate reductase (DHFR) is an enzyme that plays a crucial role in folate metabolism, which is essential for cell growth and division. DHFR has been identified as a molecular target for numerous diseases due to its significance in various biological processes. DHFR inhibitors can disrupt folate metabolism by inhibiting DHFR, leading to the inhibition of cell growth. So, a series of caffeic acid derivatives were designed, synthesized, characterized and evaluated for their in vitro ability to inhibit DHFR, as well as their antimicrobial and anticancer properties. Among all synthesized compounds, compound CE11 exhibited the highest DHFR inhibitory activity, with an IC 50 value of 0.048 µM, which is approximately four times more potent than methotrexate. Compound CE11 exhibited similar docking performance to methotrexate, binding to the same site and engaging key residues such as Glh30, Phe31, Phe34, and Ser59. It also fit snugly in the hydrophobic pocket of modeled protein. Moreover, substantial hydrophobic interactions were noted between the ligand and the hydrophobic amino acid residues of DHFR. This effectively secured the derivative within the restricted substrate cavity. Furthermore, compound CE11 demonstrated a significant anticancer activity against MCF-7 breast cancer cell line, with an IC 50 value of 5.37 ± 0.16 µM. Compounds CE3 and CE15 displayed better antibacterial activity compared to trimethoprim and comparable to ampicillin against the gram-positive bacteria S. aureus . Moreover, compounds CE3 and CE15 have shown better antibacterial activity than standard trimethoprim, ampicillin and tetracycline against the gram-negative bacteria, particularly P. aeruginosa and E. coli . Molecular docking analysis of CE3 revealed that it firmly entrapped into the active site of enzyme through hydrophobic interaction with hydrophobic residues. Additionally, it forms hydrogen bonds with important amino acid residues Ala7, Asn18, and Thr121 with excellent docking score and binding energy (-9.9, -71.77 kcal/mol). These interactions might be contributed to the significant DHFR inhibition and antimicrobial activity. The generated model holds potential value in facilitating the development of a novel category of DHFR inhibitors as anticancer and antimicrobial agents.
Background: Dihydrofolate reductase (DHFR) is an indispensable enzyme required for the survival of most prokaryotic and eukaryotic cells as it is involved in the biosynthesis of essential cellular components. DHFR has attracted a lot of attention as a molecular target for various diseases like cancer, bacterial infection, malaria, tuberculosis, dental caries, trypanosomiasis, leishmaniasis, fungal infection, influenza, Buruli ulcer, and respiratory illness. Various teams of researchers have reported different DHFR inhibitors to explore their therapeutic efficacy. Despite all the progress made, there is a strong need to find more novel leading structures, which may be used as better and safe DHFR inhibitors, especially against the microorganisms which are resistant to the developed drug candidates. Objective: This review aims to pay attention to recent development, particularly made in the past two decades and published in this field, and pay particular attention to promising DHFR inhibitors. Hence, an attempt has been made in this article to highlight the structure of dihydrofolate reductase, the mechanism of action of DHFR inhibitors, most recently reported DHFR inhibitors, diverse pharmacological applications of DHFR inhibitors, reported in-silico study data and recent patents based on DHFR inhibitors to comprehensively portray the current scenery for researchers interested in designing novel DHFR inhibitors. Conclusion: A critical review of recent studies revealed that most novel DHFR inhibitor compounds either synthetically or naturally derived are characterized by the presence of heterocyclic moieties in their structure. Non-classical antifolates like trimethoprim, pyrimethamine, and proguanil are considered excellent templates to design novel DHFR inhibitors, and most of them have substituted 2,4-diamino pyrimidine motifs. Targeting DHFR has massive potential to be investigated for newer therapeutic possibilities to treat various diseases of clinical importance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.