Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In this paper, we propose a verification method for the convergence rates of the numerical solutions for parabolic equations. Specifically, we consider the numerical convergence rates of the heat equation, the Allen–Cahn equation, and the Cahn–Hilliard equation. Convergence test results show that if we refine the spatial and temporal steps at the same time, then we have the second-order convergence rate for the second-order scheme. However, in the case of the first-order in time and the second-order in space scheme, we may have the first-order or the second-order convergence rates depending on starting spatial and temporal step sizes. Therefore, for a rigorous numerical convergence test, we need to perform the spatial and the temporal convergence tests separately.
In this article, we study the numerical technique for variable‐order fractional reaction‐diffusion and subdiffusion equations that the fractional derivative is described in Caputo's sense. The discrete scheme is developed based on Lucas multiwavelet functions and also modified and pseudo‐operational matrices. Under suitable properties of these matrices, we present the computational algorithm with high accuracy for solving the proposed problems. Modified and pseudo‐operational matrices are employed to achieve the nonlinear algebraic equation corresponding to the proposed problems. In addition, the convergence of the approximate solution to the exact solution is proven by providing an upper bound of error estimate. Numerical experiments for both classes of problems are presented to confirm our theoretical analysis.
The aim of this paper is to develop a fully discrete local discontinuous Galerkin method to solve a class of variable-order fractional diffusion problems. The scheme is discretized by a weighted-shifted Grünwald formula in the temporal discretization and a local discontinuous Galerkin method in the spatial direction. The stability and the L 2-convergence of the scheme are proved for all variable-order (t) ∈ (0, 1). The proposed method is of accuracyorder O(3 + h k+1) , where , h, and k are the temporal step size, the spatial step size, and the degree of piecewise P k polynomials, respectively. Some numerical tests are provided to illustrate the accuracy and the capability of the scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
BlogTerms and ConditionsAPI TermsPrivacy PolicyContactCookie PreferencesDo Not Sell or Share My Personal Information
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.