The celebrated Cahn–Hilliard (CH) equation was proposed to model the process of phase separation in binary alloys by Cahn and Hilliard. Since then the equation has been extended to a variety of chemical, physical, biological, and other engineering fields such as spinodal decomposition, diblock copolymer, image inpainting, multiphase fluid flows, microstructures with elastic inhomogeneity, tumor growth simulation, and topology optimization. Therefore, it is important to understand the basic mechanism of the CH equation in each modeling type. In this paper, we review the applications of the CH equation and describe the basic mechanism of each modeling type with helpful references and computational simulation results.
Tissue engineering scaffolds provide temporary mechanical support for tissue regeneration. To regenerate tissues more efficiently, an ideal structure of scaffolds should have appropriate porosity and pore structure. In this paper, we generate the Schwarz primitive P surface with various volume fractions using a phase-field model. The phase-field model enables us to design various surface-to-volume ratio structures with high porosity and mechanical properties. Comparing the Schwarz P surface's von Mises stress with that of triply periodic cylinders and cubes, we draw conclusions about the mechanical properties of the Schwarz P surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.