Phase field simulations of the microstructural evolution of the intermetallic compound (IMC) layer formed during isothermal soldering reactions between Sn-Cu solder alloys and a Cu substrate are presented. The simulation accounts for the fast grain boundary (GB) diffusion in the IMC layer, the concurrent IMC grain coarsening along with the IMC layer growth, and the dissolution of Cu from the substrate and IMC layer. The simulation results support the previous suggestions that the growth kinetics of the IMC layer during soldering is predominantly governed by the fast GB diffusion and the concurrent coarsening rate of the IMC grains. The IMC grain coarsening is initiated by a competitive growth of the IMC grains at the solder/IMC interface. It is also shown that the dissolution of Cu into an unsaturated solder reduces the coarsening rate of the IMC grains, consequently decreasing the temporal growth exponent of the IMC layer.
An experimental investigation was carried out on the kinetic nature of the set process in a phase change memory device by combined analyses of set voltage wave forms and time-resolved low-field resistances. As it turned out, the progress of a set process may be measured in terms of three characteristic times in sequence i.e., threshold switching time tth, incubation time for crystallization tinc, and complete set time tset. These characteristic times are supposed to demarcate, in some measure, different stages of crystallization in the memory material during a set process. Each of these times has a strong dependence on input pulse voltage and particularly threshold switching time tth was found to have an exponentially decaying dependence. The latter may be related to the decreasing capacitance of an amorphous phase-change material with approaching threshold switching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.