The navigation of autonomous mobile robots has in recent times gained interest from many researchers in different areas such as the industrial, agricultural, and military sectors. This paper aims at carefully investigating two advanced types of approaches for guiding a non‐holonomic mobile robot to navigate in an environment area cluttered with static obstacles. Firstly, a Fuzzy logic controller (FLC) was designed, using trapezoidal shape Membership functions (MF's). Secondly, an Adaptive neuro fuzzy inference system (ANFIS) controller was used to optimize the results obtained from trapezoidal fuzzy controller. To validate the feasibility and effectiveness of the proposed models, V‐REP and MATLAB software are used. A comparative evaluation is, then, done on the basis of speed. The simulations results showed that the mobile robot could navigate successfully into maze environment with both proposed approaches but ANFIS controller provided better results in comparison to fuzzy controller.