Osmoregulation, the physiological regulation of water and ion balance, is vital for the survival of both aquatic and terrestrial insects. In freshwater aquatic insects, such as those within the Lampyridae family, this function is important due to the natural variation of aquatic habitats. Aquaporins play a key role in this process by facilitating the rapid transport of water molecules across cell membranes, maintaining cellular water balance, and adapting to changes in external salinity. In this study, I investigate the genetic diversity and expression levels of aquaporins in Elateroidea, particularly focusing on the Lampyridae family, using transcriptomic data and in silico analyses. The results reveal the diversity of aquaporins and compare gene expression patterns between freshwater aquatic Lampyridae and terrestrial Elateroidea species, such as Lycidae, Phengodidae, and Elateridae. Phylogenetic analyses identify seven distinct clades of aquaporins and uncovered gene duplication events related to the diversification of Elateridae and Lampyridae. A comparative abundance analysis indicated higher aquaporin expression in aquatic fireflies, aligning with the need for efficient osmoregulation in aquatic environments. Additionally, stage‐specific expression patterns in Aspisoma lineatum (Neotropical firefly) and Aquatica lateralis (Paleartic firefly) suggest species‐specific strategies for coping with osmotic challenges during development. This study provides insights into the evolutionary adaptations of aquaporins in Elateroidea, highlighting their importance in both aquatic and terrestrial insect physiology.