The mosquito
Aedes aegypti
vectors the arboviral diseases yellow fever, dengue, Zika and chikungunya. Larvae are usually found developing in freshwater; however, more recently they have been increasingly found in brackish water, potential habitats which are traditionally ignored by mosquito control programs.
Aedes aegypti
larvae are osmo-regulators maintaining their hemolymph osmolarity in a range of ~ 250 to 300 mOsmol l
-1
. In freshwater, the larvae must excrete excess water while conserving ions while in brackish water, they must alleviate an accumulation of salts. The compensatory physiological mechanisms must involve the transport of ions and water but little is known about the water transport mechanisms in the osmoregulatory organs of these larvae. Water traverses cellular membranes predominantly through transmembrane proteins named aquaporins (AQPs) and
Aedes aegypti
possesses 6 AQP homologues (AaAQP1 to 6). The objective of this study was to determine if larvae that develop in freshwater or brackish water have differential aquaporin expression in osmoregulatory organs, which could inform us about the relative importance and function of aquaporins to mosquito survival under these different osmotic conditions. We found that AaAQP transcript abundance was similar in organs of freshwater and brackish water mosquito larvae. Furthermore, in the Malpighian tubules and hindgut AaAQP protein abundance was unaffected by the rearing conditions, but in the gastric caeca the protein level of one aquaporin, AaAQP1 was elevated in brackish water. We found that AaAQP1 was expressed apically while AaAQP4 and AaAQP5 were found to be apical and/or basal in the epithelia of osmoregulatory organs. Overall, the results suggest that aquaporin expression in the osmoregulatory organs is mostly consistent between larvae that are developing in freshwater and brackish water. This suggests that aquaporins may not have major roles in adapting to longterm survival in brackish water or that aquaporin function may be regulated by other mechanisms like post-translational modifications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.