A projected drying of the extra-tropics under enhanced levels of atmospheric greenhouse gases has large implications for natural systems and water security across southern Australia. The drying is driven by well studied changes to the atmospheric circulation and is consistent across climate models, providing a strong basis from which adaptation planners can make decisions. However, the magnitude and seasonal expression of the drying is expected to vary across the region. Here we describe the spatial signature of the projected change from the new CMIP5 climate models and downscaling of those models, and review various lines of evidence about the seasonal expression.Winter rainfall is projected to decline across much of southern Australia with the exception of Tasmania, which is projected to experience little change or a rainfall increase in association with projected increases in the strength of the westerlies. Projected winter decrease is greatest in southwest Western Australia. A 'seasonal paradox' between observations and CMIP5 model projections in the shoulder seasons is evident, with strong and consistent drying projected for spring and less drying projected for autumn, the reverse of the observed trends over the last 50 years. The models have some biases in the simulation of certain synoptic types (e.g. cutoff lows), the rainfall brought by those synoptic types, and the mechanism of rainfall production. Rainfall projections based on statistical downscaling are examined in relation to some of these biases, projecting stronger future declines in some regions of southeast Australia in autumn than indicated by the host models, as well as little change to the magnitude of the projected declines in spring. Apart from Tasmania in winter, the decline of rainfall in southern Australia during the cool season remains a confident projection but the seasonal expression of change remains an ongoing research topic.