2021
DOI: 10.1007/s11740-021-01019-5
|View full text |Cite
|
Sign up to set email alerts
|

A comparison of methods for determining performance based employee deployment in production systems

Abstract: Employee deployment is a crucial process in production systems. Based on qualification and individual performance of employees, deployment decisions can lead to ambiguous outcomes. This paper first reviews the state of the art and further compares two methods based on combinatorial analysis for employee deployment. Therefore, this paper emphasizes the costs and benefits of a Brute Force and an alternative Greedy method. When considering the qualification and individual performance of each employee, both algori… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
1
0

Year Published

2021
2021
2025
2025

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 11 publications
(5 citation statements)
references
References 19 publications
0
1
0
Order By: Relevance
“…Metode Penelitian terkait Pada tinjauan literatur yang sudah dilakukan terdapat metode yang digunakan untuk mengevaluasi keefektifan metode penilaian kinerja karyawan. Seperti pada penelitian sebelumnya yang dilakukan oleh [23]dengan membahas topik perbandingan metode untuk menentukan penempatan karyawan berdasarkan kinerja menggunakan optimization algorithm sebagai metode untuk evaluasi untuk metode penilaian kinerja brute force algorithm dan alternative greedy algorithm. Kemudian pada penelitian yang dilakukan oleh [28] menggunakan metode fuzzy comprehensive sebagai metode evaluasi untuk metode penilaian kinerja hill climbing, decision support model.…”
Section: Rq2 Metode Evaluasi Apa Yang Digunakan Dalam Mengevaluasi Ke...unclassified
“…Metode Penelitian terkait Pada tinjauan literatur yang sudah dilakukan terdapat metode yang digunakan untuk mengevaluasi keefektifan metode penilaian kinerja karyawan. Seperti pada penelitian sebelumnya yang dilakukan oleh [23]dengan membahas topik perbandingan metode untuk menentukan penempatan karyawan berdasarkan kinerja menggunakan optimization algorithm sebagai metode untuk evaluasi untuk metode penilaian kinerja brute force algorithm dan alternative greedy algorithm. Kemudian pada penelitian yang dilakukan oleh [28] menggunakan metode fuzzy comprehensive sebagai metode evaluasi untuk metode penilaian kinerja hill climbing, decision support model.…”
Section: Rq2 Metode Evaluasi Apa Yang Digunakan Dalam Mengevaluasi Ke...unclassified
“…Viability refers to the willingness to continue to work together by the individuals in the team [28]. Performance, on the other hand, is more difficult to conceptualize [29,30], as it is constrained by the quality of the measures used to assess teams. Cohen and Bailey [31] for example, assess team effectiveness using task, group, organization design factors, environmental factors, internal processes, external processes, and group psycho-social traits.…”
Section: Theoretical Backgroundmentioning
confidence: 99%
“…However, although both the stochastic population-based evolutionary and greedybased search heuristic procedures are often more efficient than brute exhaustive search, they may sometimes not guarantee to achieve of global optimum [6,7], whereas greedy and its variant implementation, such as the greedy randomized adaptive search which have been used by (8) may face a hill climbing problem, the evolutionary extremums may be caused by its population-based stochastic search heuristic implementation which may probabilistically select at that one time from a very unfit initialized genes chromosomes of the creature being optimized [9], among other things. As such, as observed in [10], the surprising outstanding successes of the systematic brute force-based exhaustive search counterpart in producing optimal WVE models configuration sets with predictive performances similar to those created by evolutionary-based optimization procedures in conjunction with its theoretical guarantee for finding an optimal solution through a search across systematic search spaces [11], it may become imperative to implement the brute exhaustive search procedures, as given the required high computational effort is available, it guarantees exhaustion of all candidate solutions combinations [11,12], for optimality search problems, such as this of finding the appropriate weights for the most accurate WVE, at a reasonable efficiency tradeoff when the deemed global optima solution estimations has been defined as a key requirement, that is, must occur.…”
mentioning
confidence: 99%