1992
DOI: 10.1080/07474939208800232
|View full text |Cite
|
Sign up to set email alerts
|

A comparison of model selection criteria

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
40
0
4

Year Published

2002
2002
2015
2015

Publication Types

Select...
8
2

Relationship

0
10

Authors

Journals

citations
Cited by 76 publications
(45 citation statements)
references
References 15 publications
1
40
0
4
Order By: Relevance
“…Heckman and Walker (1987) include the Schwarz criterion in their set of criteria to choose among competing duration models. Mills and Prasad (1992) find that the Schwarz criterion consistently outperforms other model selection criteria in a Monte Carlo analysis. In our case, the Schwarz criterion favors the model in which both the control function and regional fixed effects are included.…”
Section: B Control Function Resultsmentioning
confidence: 97%
“…Heckman and Walker (1987) include the Schwarz criterion in their set of criteria to choose among competing duration models. Mills and Prasad (1992) find that the Schwarz criterion consistently outperforms other model selection criteria in a Monte Carlo analysis. In our case, the Schwarz criterion favors the model in which both the control function and regional fixed effects are included.…”
Section: B Control Function Resultsmentioning
confidence: 97%
“…Since arbitrarily chosen specifications of a VAR model are likely to produce unreliable results, we use a data based model selection criterion to specify the VAR model for Greece's economy. Among various model selection criteria the one proposed by Schwartz [24] , known as Schwartz Bayesian information criterion (SBC), is shown to outperform other alternatives [30] . Therefore, our specification of the VAR model is based on Schwartz Bayesian information criterion.…”
Section: Var Model With An Error Correction Mechanismmentioning
confidence: 99%
“…Cependant, quelques auteurs, Hannan et Quinn (1979) par exemple, pour les modèles AR, ont étudié les performances des critères dans des cas où il n'existe pas de vrai ordre fi ni. Des études de simulation de ce type sont Hannan et Quinn (1979), Geweke et Meese (1981), Lütkepohl (1985), Koehler et Murphree (1988), Mills et Prasad (1992), Ducharme (1997) et Anderson et al (1998). Comme le présent article, toutes ces études traitent du problème de l'estimation de la meilleure représentation d'un processus et non pas de l'estimation d'une caractérisation d'un processus de nuisance à utiliser dans des tests d'hypothèses.…”
Section: éValuation De Critères D'information Pour La Sélection De Mounclassified