The atypical chemokine receptor ACKR3 (formerly CXCR7), overexpressed in various cancers compared to normal tissues, plays a pivotal role in adhesion, angiogenesis, tumorigenesis, metastasis and tumor cell survival. ACKR3 modulates the tumor microenvironment and regulates tumor growth. The therapeutic potential of ACKR3 has also been demonstrated in various murine models of human cancer. Literature findings underscore the importance of ACKR3 in disease progression and suggest it as an important diagnostic maker for non-invasive imaging of ACKR3 overexpressing malignancies. There are currently no reports on direct receptor-specific detection of ACKR3 expression. Here we report the evaluation of a radiolabeled ACKR3-targeted monoclonal antibody (ACKR3-mAb) for the non-invasive in vivo nuclear imaging of ACKR3 expression in human breast, lung and esophageal squamous cell carcinoma cancer xenografts.
Methods
ACKR3 transcripts were extracted from Cancer Cell Line Encyclopedia (CCLE), The Cancer Genome Atlas (TCGA) and the Clinical Lung Cancer Genome Project (CLCGP). 89Zr-ACKR3-mAb was evaluated in vitro and subsequently in vivo by positron emission tomography (PET) and ex vivo biodistribution studies in mice xenografted with breast (MDA-MB-231-ACKR3 (231-AC-KR3), MDA-MB-231 (231), MCF7), lung (HCC95) or esophageal (KYSE520) cancer cells. In addition, ACKR3-mAb was radiolabeled with Iodine-125 and evaluated by single photon emission computed tomography (SPECT) imaging and ex vivo biodistribution studies.
Results
ACKR3 transcript levels were highest in lung squamous cell carcinoma (LUSC) among the 21 cancer type data extracted from TCGA. Also, CLCGP data showed that LUSC has the highest CXCR7 transcript levels compared to other lung cancer subtypes. The 89Zr-ACKR3-mAb was produced in 80±5% radiochemical yields with >98% radiochemical purity. In vitro cell uptake of 89Zr-ACKR3-mAb correlated with gradient levels of cell surface ACKR3 expression observed by flow cytometry. In vivo PET imaging and ex vivo biodistribution studies in mice with breast, lung and esophageal cancer xenografts consistently showed enhanced 89Zr-ACKR3-mAb uptake in high ACKR3 expressing tumors. SPECT imaging of 125I-ACKR3-mAb showed the versatility of ACKR3-mAb for in vivo monitoring of ACKR3 expression.
Conclusions
Data from this study suggest ACKR3 to be a viable diagnostic marker and demonstrate the utility of radiolabeled ACKR3-mAb for in vivo visualization of ACKR3 overexpressing malignancies.