A method to emulate differential transmitter architectures is presented. The technique, which is based on mixedmode active load-pull measurements, predicts power amplifier (PA) performance while avoiding the need to manufacture the complete PA. The method is based on an iterative procedure using transistor/branch PA active load-pull measurements together with the S-parameters of the load network. Advantageously, real world performance of the complete differential PA can be evaluated in the design stage. Thereby, many different output combiners and configurations, e.g., biases, transistors, and branch phases, can be fully evaluated without fabrication. Compared to prior art, the method requires only a single representative deviceunder-test, while providing flexibility in the input signal and the target load network. Thus, a novel powerful measurement tool for PA designers is presented. The technique is demonstrated by performing mixed-mode load-pull and emulating a differential amplifier at 2.14 GHz using continuous wave signals.