Fig. 1. Equal-time (5 minutes) renderings of a smoky Kitchen scene. Gradient-domain volumetric rendering techniques with L1 reconstruction converge faster than primal-domain volumetric rendering technique. The relMSE error metric has a unitless scale of 10 −2 .Gradient-domain rendering can improve the convergence of surface-based light transport by exploiting smoothness in image space. Scenes with participating media exhibit similar smoothness and could potentially benefit from gradient-domain techniques. We introduce the first gradient-domain formulation of image synthesis with homogeneous participating media, including four novel and efficient gradient-domain volumetric density estimation algorithms. We show that naïve extensions of gradient domain path-space and density estimation methods to volumetric media, while functional, can result in inefficient estimators. Focussing on point-, beam-and plane-based gradient-domain estimators, we introduce a novel shift mapping that eliminates redundancies in the naïve formulations using spatial relaxation within the volume. We show that gradient-domain volumetric rendering improve convergence compared to primal domain state-of-the-art, across a suite of scenes. Our formulation and algorithms support progressive estimation and are easy to incorporate atop existing renderers.Authors' addresses: Adrien Gruson, adrien