Proceedings of ACL 2018, Student Research Workshop 2018
DOI: 10.18653/v1/p18-3013
|View full text |Cite
|
Sign up to set email alerts
|

A Computational Approach to Feature Extraction for Identification of Suicidal Ideation in Tweets

Abstract: Technological advancements in the World Wide Web and social networks in particular coupled with an increase in social media usage has led to a positive correlation between the exhibition of Suicidal ideation on websites such as Twitter and cases of suicide. This paper proposes a novel supervised approach for detecting suicidal ideation in content on Twitter. A set of features is proposed for training both linear and ensemble classifiers over a dataset of manually annotated tweets. The performance of the propos… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
33
0
2

Year Published

2019
2019
2023
2023

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 69 publications
(35 citation statements)
references
References 25 publications
0
33
0
2
Order By: Relevance
“…He introduced TF-IDF matrices and singular vector decompositions for them. Sawhney et al [27] improved the performance of Random Forest (RF) classifier for identification of suicide ideation in tweets. Logistic regression classification algorithms applied in Aladag et al [28] showed promising results in detecting suicidal content with 80-92% accuracy rate.…”
Section: Background and Related Workmentioning
confidence: 99%
See 1 more Smart Citation
“…He introduced TF-IDF matrices and singular vector decompositions for them. Sawhney et al [27] improved the performance of Random Forest (RF) classifier for identification of suicide ideation in tweets. Logistic regression classification algorithms applied in Aladag et al [28] showed promising results in detecting suicidal content with 80-92% accuracy rate.…”
Section: Background and Related Workmentioning
confidence: 99%
“…The count of each word is used to create a feature vector for a further document summarization [78]. Statistical features [27] are extracted from the posts to encompass the number of tokens, words, sentences and their length.…”
Section: Baselinementioning
confidence: 99%
“…Moreover, text-based judgments will fail to identify users who do not choose to explicitly share suicidal or depressive feelings online 19 . Finally, in many cases, the data collection and judgment process has been conducted on postings from designated, suicide-related forums, such as "suicide watch" on Reddit 14,20 , thus limiting their applicability to more natural, everyday settings.…”
mentioning
confidence: 99%
“…en el idioma inglés (Sawhney et al, 2018;Carson et al, 2019;Leiva & Freire, 2017) o en dos idiomas español-inglés (Cook et al, 2016), originando una necesidad creciente de contar con recursos de análisis de textos de causas del suicidio. Esto abre una ventana de desafíos y retos para llevar a cabo procesamiento automático de textos en español.…”
Section: Trabajo Relacionadounclassified
“…Esto abre una ventana de desafíos y retos para llevar a cabo procesamiento automático de textos en español. Además, algunos trabajos revisados (Reyes-Ortiz & Bravo, 2018;Sawhney et al, 2018;Wicentowski & Sydes, 2012;Luyckx et al, 2012;Liakata et al, 2012;Poulin et al, 2014;Carson et al, 2019), se enfocan, solamente, en la identificación o clasificación del suicidio, mientras que nuestro trabajo añade la extracción y análisis de las causas del mismo. Por lo tanto, además de aportar una solución al problema de la extracción automática de causas del suicidio, brinda un panorama sobre los marcadores lingüísticos causales que son característicos de este tipo de textos en español y almacena las causas del suicidio reportadas en notas periodísticas.…”
Section: Trabajo Relacionadounclassified