Distributed word representations have become an essential foundation for biomedical natural language processing (BioNLP), text mining and information retrieval. Word embeddings are traditionally computed at the word level from a large corpus of unlabeled text, ignoring the information present in the internal structure of words or any information available in domain specific structured resources such as ontologies. However, such information holds potentials for greatly improving the quality of the word representation, as suggested in some recent studies in the general domain. Here we present BioWordVec: an open set of biomedical word vectors/embeddings that combines subword information from unlabeled biomedical text with a widely-used biomedical controlled vocabulary called Medical Subject Headings (MeSH). We assess both the validity and utility of our generated word embeddings over multiple NLP tasks in the biomedical domain. Our benchmarking results demonstrate that our word embeddings can result in significantly improved performance over the previous state of the art in those challenging tasks.
Motivation: Detecting drug-drug interaction (DDI) has become a vital part of public health safety. Therefore, using text mining techniques to extract DDIs from biomedical literature has received great attentions. However, this research is still at an early stage and its performance has much room to improve.Results: In this article, we present a syntax convolutional neural network (SCNN) based DDI extraction method. In this method, a novel word embedding, syntax word embedding, is proposed to employ the syntactic information of a sentence. Then the position and part of speech features are introduced to extend the embedding of each word. Later, auto-encoder is introduced to encode the traditional bag-of-words feature (sparse 0–1 vector) as the dense real value vector. Finally, a combination of embedding-based convolutional features and traditional features are fed to the softmax classifier to extract DDIs from biomedical literature. Experimental results on the DDIExtraction 2013 corpus show that SCNN obtains a better performance (an F-score of 0.686) than other state-of-the-art methods.Availability and Implementation: The source code is available for academic use at http://202.118.75.18:8080/DDI/SCNN-DDI.zip.Contact:
yangzh@dlut.edu.cnSupplementary information:
Supplementary data are available at Bioinformatics online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.