Supplementary data are available at Bioinformatics online.
Motivation: Detecting drug-drug interaction (DDI) has become a vital part of public health safety. Therefore, using text mining techniques to extract DDIs from biomedical literature has received great attentions. However, this research is still at an early stage and its performance has much room to improve.Results: In this article, we present a syntax convolutional neural network (SCNN) based DDI extraction method. In this method, a novel word embedding, syntax word embedding, is proposed to employ the syntactic information of a sentence. Then the position and part of speech features are introduced to extend the embedding of each word. Later, auto-encoder is introduced to encode the traditional bag-of-words feature (sparse 0–1 vector) as the dense real value vector. Finally, a combination of embedding-based convolutional features and traditional features are fed to the softmax classifier to extract DDIs from biomedical literature. Experimental results on the DDIExtraction 2013 corpus show that SCNN obtains a better performance (an F-score of 0.686) than other state-of-the-art methods.Availability and Implementation: The source code is available for academic use at http://202.118.75.18:8080/DDI/SCNN-DDI.zip.Contact: yangzh@dlut.edu.cnSupplementary information: Supplementary data are available at Bioinformatics online.
BackgroundDrug-drug interactions (DDIs) often bring unexpected side effects. The clinical recognition of DDIs is a crucial issue for both patient safety and healthcare cost control. However, although text-mining-based systems explore various methods to classify DDIs, the classification performance with regard to DDIs in long and complex sentences is still unsatisfactory.MethodsIn this study, we propose an effective model that classifies DDIs from the literature by combining an attention mechanism and a recurrent neural network with long short-term memory (LSTM) units. In our approach, first, a candidate-drug-oriented input attention acting on word-embedding vectors automatically learns which words are more influential for a given drug pair. Next, the inputs merging the position- and POS-embedding vectors are passed to a bidirectional LSTM layer whose outputs at the last time step represent the high-level semantic information of the whole sentence. Finally, a softmax layer performs DDI classification.ResultsExperimental results from the DDIExtraction 2013 corpus show that our system performs the best with respect to detection and classification (84.0% and 77.3%, respectively) compared with other state-of-the-art methods. In particular, for the Medline-2013 dataset with long and complex sentences, our F-score far exceeds those of top-ranking systems by 12.6%.ConclusionsOur approach effectively improves the performance of DDI classification tasks. Experimental analysis demonstrates that our model performs better with respect to recognizing not only close-range but also long-range patterns among words, especially for long, complex and compound sentences.
Motivation Automatic phenotype concept recognition from unstructured text remains a challenging task in biomedical text mining research. Previous works that address the task typically use dictionary-based matching methods, which can achieve high precision but suffer from lower recall. Recently, machine learning-based methods have been proposed to identify biomedical concepts, which can recognize more unseen concept synonyms by automatic feature learning. However, most methods require large corpora of manually annotated data for model training, which is difficult to obtain due to the high cost of human annotation. Results In this article, we propose PhenoTagger, a hybrid method that combines both dictionary and machine learning-based methods to recognize Human Phenotype Ontology (HPO) concepts in unstructured biomedical text. We first use all concepts and synonyms in HPO to construct a dictionary, which is then used to automatically build a distantly supervised training dataset for machine learning. Next, a cutting-edge deep learning model is trained to classify each candidate phrase (n-gram from input sentence) into a corresponding concept label. Finally, the dictionary and machine learning-based prediction results are combined for improved performance. Our method is validated with two HPO corpora, and the results show that PhenoTagger compares favorably to previous methods. In addition, to demonstrate the generalizability of our method, we retrained PhenoTagger using the disease ontology MEDIC for disease concept recognition to investigate the effect of training on different ontologies. Experimental results on the NCBI disease corpus show that PhenoTagger without requiring manually annotated training data achieves competitive performance as compared with state-of-the-art supervised methods. Availabilityand implementation The source code, API information and data for PhenoTagger are freely available at https://github.com/ncbi-nlp/PhenoTagger. Supplementary information Supplementary data are available at Bioinformatics online.
Background: Hepatocellular carcinoma is one of the most general malignant neoplasms in adults with high mortality. Mining relative medical knowledge from rapidly growing text data and integrating it with other existing biomedical resources will provide support to the research on the hepatocellular carcinoma. To this purpose, we constructed a knowledge graph for Hepatocellular Carcinoma (KGHC). Methods: We propose an approach to build a knowledge graph for hepatocellular carcinoma. Specifically, we first extracted knowledge from structured data and unstructured data. Since the extracted entities may contain some noise, we applied a biomedical information extraction system, named BioIE, to filter the data in KGHC. Then we introduced a fusion method which is used to fuse the extracted data. Finally, we stored the data into the Neo4j which can help researchers analyze the network of hepatocellular carcinoma. Results: KGHC contains 13,296 triples and provides the knowledge of hepatocellular carcinoma for healthcare professionals, making them free of digging into a large amount of biomedical literatures. This could hopefully improve the efficiency of researches on the hepatocellular carcinoma. KGHC is accessible free for academic research purpose at http://202.118.75.18:18895/browser/. Conclusions: In this paper, we present a knowledge graph associated with hepatocellular carcinoma, which is constructed with vast amounts of structured and unstructured data. The evaluation results show that the data in KGHC is of high quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.