MotivationAdverse events resulting from drug-drug interactions (DDI) pose a serious health issue. The ability to automatically extract DDIs described in the biomedical literature could further efforts for ongoing pharmacovigilance. Most of neural networks-based methods typically focus on sentence sequence to identify these DDIs, however the shortest dependency path (SDP) between the two entities contains valuable syntactic and semantic information. Effectively exploiting such information may improve DDI extraction.ResultsIn this article, we present a hierarchical recurrent neural networks (RNNs)-based method to integrate the SDP and sentence sequence for DDI extraction task. Firstly, the sentence sequence is divided into three subsequences. Then, the bottom RNNs model is employed to learn the feature representation of the subsequences and SDP, and the top RNNs model is employed to learn the feature representation of both sentence sequence and SDP. Furthermore, we introduce the embedding attention mechanism to identify and enhance keywords for the DDI extraction task. We evaluate our approach using the DDI extraction 2013 corpus. Our method is competitive or superior in performance as compared with other state-of-the-art methods. Experimental results show that the sentence sequence and SDP are complementary to each other. Integrating the sentence sequence with SDP can effectively improve the DDI extraction performance.Availability and implementationThe experimental data is available at https://github.com/zhangyijia1979/hierarchical-RNNs-model-for-DDI-extraction.Supplementary information Supplementary data are available at Bioinformatics online.
BackgroundDrug-drug interactions (DDIs) often bring unexpected side effects. The clinical recognition of DDIs is a crucial issue for both patient safety and healthcare cost control. However, although text-mining-based systems explore various methods to classify DDIs, the classification performance with regard to DDIs in long and complex sentences is still unsatisfactory.MethodsIn this study, we propose an effective model that classifies DDIs from the literature by combining an attention mechanism and a recurrent neural network with long short-term memory (LSTM) units. In our approach, first, a candidate-drug-oriented input attention acting on word-embedding vectors automatically learns which words are more influential for a given drug pair. Next, the inputs merging the position- and POS-embedding vectors are passed to a bidirectional LSTM layer whose outputs at the last time step represent the high-level semantic information of the whole sentence. Finally, a softmax layer performs DDI classification.ResultsExperimental results from the DDIExtraction 2013 corpus show that our system performs the best with respect to detection and classification (84.0% and 77.3%, respectively) compared with other state-of-the-art methods. In particular, for the Medline-2013 dataset with long and complex sentences, our F-score far exceeds those of top-ranking systems by 12.6%.ConclusionsOur approach effectively improves the performance of DDI classification tasks. Experimental analysis demonstrates that our model performs better with respect to recognizing not only close-range but also long-range patterns among words, especially for long, complex and compound sentences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.