Despite the large number of applications with micropolar models, the aspects of their implementation have been rarely addressed in the literature. In the present paper, a strategy for the computational modeling of micropolar media with elastoplasticity and elastic degradation is investigated. The proposed strategy is based on the Object-Oriented Paradigm (OOP) and on the use of tensor objects. The presence of tensor objects inside the code allows to obtain a constitutive models framework that, with respect to existent implementations, is independent on both the adopted analysis model and numerical method. The OOP, with its properties of abstraction, inheritance, and polymorphism, leads to a framework highly modular and easy to expand. The theoretical basis is a compact tensorial representation for the micropolar equations that makes them formally identical to the ones of the classic continuum theory. This compatibility has been here extended to their computational expressions, making possible to use the same code structure for both the continuum models, taking advantage of existing implementations of classic constitutive models.