The present paper investigates the phenomenon of discontinuous failure (or localization) in elastic-degrading micropolar media. A recently proposed unified formulation for elastic degradation in micropolar media, defined in terms of secant tensors, loading functions and degradation rules, is used as a starting point for the localization analysis. Well-known concepts on acceleration waves propagation, such as the Maxwell compatibility condition and the Fresnel–Hadamard propagation condition, are derived for the considered material model in order to obtain a proper failure indicator. Peculiar problems are investigated analytically in details, in order to evaluate the effects on the onset of localization of two of the additional material parameters of the micropolar continuum, the Cosserat’s shear modulus and the internal bending length. Numerical simulations with a finite element model are also presented, in order to show the regularization behaviour of the micropolar formulation on the pathological effects due to the localization phenomenon.
Size effect is an important issue in concrete structures bearing in mind that it can influence many aspects of analysis such as strength, brittleness and structural ductility, fracture toughness and fracture energy, among others. Further this, ever more new methods are being developed to evaluate displacement fields in structures. In this paper an experimental evaluation of the size effect is performed applying Digital Image Correlation (DIC) technique to measure displacements on the surface of beams. Three point bending tests were performed on three different size concrete beams with a notch at the midspan. The results allow a better understanding of the size effect and demonstrate the efficiency of Digital Image Correlation to obtain measures of displacements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.