Nucleic acid therapeutics have demonstrated tremendous potential for treating diseases by targeting the genetic underpinnings at the transcriptomic level. However, their efficacy hinges on robust strategies to protect nucleic acids from degradation during circulation and to facilitate precise delivery to diseased tissues and cells. Here the critical roles of chemical modification and bioconjugation in advancing nucleic acid therapeutics for improved binding affinity, enhanced stability, and targeted delivery are reviewed. Commencing diverse applications, the significance of different chemical modifications is discussed based on recent literature and clinical products, on oligonucleotides. These modifications encompass backbone, ribose, base alterations and bioconjugation techniques such as N‐acetylgalactosamine (GAlNac), aptamers, antibodies, and cell‐penetrating peptides (CPPs). Supported by a clinical perspective, diverse applications and ongoing developments are highlighted. Furthermore, the current landscape of nucleic acid therapeutics and their potential in addressing genetic disorders with multiple cellular/organelle targeting is discussed. Here the promising prospect of combining chemical innovation and bioconjugation strategies is underscored to propel the development of more effective nucleic acid therapeutics.