1970
DOI: 10.1007/bf02162400
|View full text |Cite
|
Sign up to set email alerts
|

A constructive method for the solution of the stability problem

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0
1

Year Published

1972
1972
2019
2019

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 12 publications
(3 citation statements)
references
References 4 publications
0
2
0
1
Order By: Relevance
“…[4] give a similar treatment of the block Arnoldi process; however, their algorithm computes an orthogonal basis of the entire controllable subspace (i.e., the Krylov space K(A, B)), the construction of Am is carried out using (20) rather than by the Arnoldi process and finally, they do not consider (19). In our algorithm, we use their implementation of (16) for the updates given in (17). This ensures that (19) (14) is then given by (21)…”
mentioning
confidence: 99%
“…[4] give a similar treatment of the block Arnoldi process; however, their algorithm computes an orthogonal basis of the entire controllable subspace (i.e., the Krylov space K(A, B)), the construction of Am is carried out using (20) rather than by the Arnoldi process and finally, they do not consider (19). In our algorithm, we use their implementation of (16) for the updates given in (17). This ensures that (19) (14) is then given by (21)…”
mentioning
confidence: 99%
“…10 for n = 4). Thus for n > 2 we generalize the idea used in [7] for special matrices Z, W . We choose some block of entries of X 11 , calculate the remaining entries and then we obtain the appropriate values of chosen entries as a solution to some linear system, see [18] for details.…”
Section: Solution To the Lyapunov Equationmentioning
confidence: 99%
“…Howland und Senez [6] haben ein Verfahren entwickelt, bei dem die Stabilitiitsfrage durch direkte L6sung dieser Liapunovgleichung ftir reelle Matrizen gel/Sst wird; diese Methode wird yon Meyer-Spasche ( [7], [9]) auf komplexe Matrizen erweitert. Howland und Senez [6] haben ein Verfahren entwickelt, bei dem die Stabilitiitsfrage durch direkte L6sung dieser Liapunovgleichung ftir reelle Matrizen gel/Sst wird; diese Methode wird yon Meyer-Spasche ( [7], [9]) auf komplexe Matrizen erweitert.…”
Section: Fsbersichtunclassified