Previous research [N. Bhandari and D. K. Rollins, Ind. Eng. Chem. Res., 2003, 42, 5583] introduced a methodology for obtaining accurate continuous-time multiple-input, multiple-output (MIMO) models for Wiener processes with nonlinear static and dynamic behavior. This methodology consists of a model-building procedure for estimation of model forms in the Wiener structure and a choice of two algorithms for exact predictions of true Wiener systems. One algorithm uses only the most-recent input changes but is restricted to approximately steady-state conditions between input changes. The other algorithm has no restricted conditions but is dependent on all past input changes and, thus, requires a fading memory treatment. This article extends the former algorithm by proposing a new continuous-time algorithm that is not restricted by steady-state conditions between input changes. In addition, the proposed algorithm is dependent only on the most-recent input changes. Evaluation of the proposed algorithm is conducted using a simulated continuously stirred tank reactor (CSTR) that closely follows a Wiener process; the results of this study are compared with the other two previously mentioned algorithms. Results are given for two basic cases: (i) no noise and (ii) independently, identically, and normally distributed noise. Res., 2003, 42, 5583] introduced a methodology for obtaining accurate continuous-time multiple-input, multiple-output (MIMO) models for Wiener processes with nonlinear static and dynamic behavior. This methodology consists of a model-building procedure for estimation of model forms in the Wiener structure and a choice of two algorithms for exact predictions of true Wiener systems. One algorithm uses only the most-recent input changes but is restricted to approximately steadystate conditions between input changes. The other algorithm has no restricted conditions but is dependent on all past input changes and, thus, requires a fading memory treatment. This article extends the former algorithm by proposing a new continuous-time algorithm that is not restricted by steady-state conditions between input changes. In addition, the proposed algorithm is dependent only on the most-recent input changes. Evaluation of the proposed algorithm is conducted using a simulated continuously stirred tank reactor (CSTR) that closely follows a Wiener process; the results of this study are compared with the other two previously mentioned algorithms. Results are given for two basic cases: (i) no noise and (ii) independently, identically, and normally distributed noise.
IntroductionThe nature of chemical processes in industry has become increasingly complicated. Linear modeling is no longer as useful in obtaining accurate models as nonlinear modeling. As one of the popular nonlinear techniques, block-oriented modeling has received a significant amount of attention. 1-3 Hammerstein and Wiener systems are two block-oriented structures that have been widely used to model chemical processes. Both of these systems have a ...