Abstract:Model-based Reinforcement Learning has shown considerable experimental success. However, a theoretical understanding of it is still lacking. To this end, we analyze the error in cumulative reward for both stochastic and deterministic transitions using a contraction approach. We show that this approach doesn't require strong assumptions and can recover the typical quadratic error to the horizon. We prove that branched rollouts can reduce this error and are essential for deterministic transitions to have a Bellm… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.