We introduce PowerGym, an open-source reinforcement learning environment for Volt-Var control in power distribution systems. Following OpenAI Gym APIs, PowerGym targets minimizing power loss and voltage violations under physical networked constraints. PowerGym provides four distribution systems (13Bus, 34Bus, 123Bus, and 8500Node) based on IEEE benchmark systems and design variants for various control difficulties. To foster generalization, PowerGym offers a detailed customization guide for users working with their distribution systems. As a demonstration, we examine state-of-the-art reinforcement learning algorithms in PowerGym and validate the environment by studying controller behaviors. The repository is available at https://github.com/siemens/powergym.
Model-based reinforcement learning (MBRL) aims to learn a dynamic model to reduce the number of interactions with real-world environments. However, due to estimation error, rollouts in the learned model, especially those of long horizon, fail to match the ones in real-world environments. This mismatching has seriously impacted the sample complexity of MBRL. The phenomenon can be attributed to the fact that previous works employ supervised learning to learn the one-step transition models, which has inherent difficulty ensuring the matching of distributions from multi-step rollouts. Based on the claim, we propose to learn the synthesized model by matching the distributions of multi-step rollouts sampled from the synthesized model and the real ones via WGAN. We theoretically show that matching the two can minimize the difference of cumulative rewards between the real transition and the learned one. Our experiments also show that the proposed model imitation method outperforms the state-of-the-art in terms of sample complexity and average return.
Model-based Reinforcement Learning has shown considerable experimental success. However, a theoretical understanding of it is still lacking. To this end, we analyze the error in cumulative reward for both stochastic and deterministic transitions using a contraction approach. We show that this approach doesn't require strong assumptions and can recover the typical quadratic error to the horizon. We prove that branched rollouts can reduce this error and are essential for deterministic transitions to have a Bellman contraction. Our results also apply to Imitation Learning, where we prove that GAN-type learning is better than Behavioral Cloning in continuous state and action spaces.
Reinforcement learning is well-studied under discrete actions. Integer actions setting is popular in the industry yet still challenging due to its high dimensionality. To this end, we study reinforcement learning under integer actions by incorporating the Soft Actor-Critic (SAC) algorithm with an integer reparameterization. Our key observation for integer actions is that their discrete structure can be simplified using their comparability property. Hence, the proposed integer reparameterization does not need one-hot encoding and is of low dimensionality. Experiments show that the proposed SAC under integer actions is as good as the continuous action version on robot control tasks and outperforms Proximal Policy Optimization on power distribution systems control tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.