Standalone DC microgrids (SDCMGs) are emerging as prominent solutions to remote customers. As these SDCMGs mainly depend on renewable energy sources to curb carbon emission, reliability of the system is lessened due to their intermittent nature. The battery could offer a solution to this problem as it is inherently enclosed by DC grid for power balancing, but the purpose may not be served completely due to high capital cost and maintenance. Thus, the diesel generator (DG) becomes a major alternative to overcome this issue because of low investment, high compatibility, and flexibility. However, DG inhibits with cranking delay, sluggish response and low fuel efficiency under frequent switching and variable loading scenarios. To suppress the issues, a new power management strategy (PMS) is developed to ensure proper coordination between different sources, storage devices and loads in SDCMG. In addition to this, an effective control scheme is also proposed to achieve seamless regulation of DC bus voltage even under extreme conditions. In this study, different SDCMG configuration is considered for testing and simulation of system is carried out in real‐time digital simulator to prove their viability. A scaled prototype is developed to validate simulation results and authenticate proposed PMS and control scheme.