This paper presents a novel impedance-based approach to efficiently estimate the state of charge (SOC) of a Li-ion battery. By using an AC impedance analyzer, a database is constructed, containing records of AC impedance versus SOC. In practical applications, the SOC values can be found instantly once the contents of the database are referenced. For validation purposes, AC impedance comparisons are conducted using AC impedance analyzer as a benchmark at SOC of 0%, 50% and 100%, which indicate errors of 8.636%, 2.604% and 0.600%, respectively.
A novel, active cell balancing circuit and charging strategy in lithium battery pack is proposed in this paper. The active cell balancing circuit mainly consists of a battery voltage measurement circuit and switch control circuit. First, all individual cell voltages are measured by an MSP430 microcontroller equipped with an isolation circuit and a filter circuit. Then, the maximum cell voltage difference is calculated by subtracting the minimum cell voltage from the maximum cell voltage. When the maximum cell voltage difference exceeds 0.05 V, the balancing action starts to carry on. The MSP430 microcontroller output controls signals to close the switches corresponding to the battery cell with the maximum voltage. At this time, the balancing charge power performs a balancing charge for other batteries, except for the one that is switched on. In addition, a three-stage balancing charge strategy is also proposed in this paper to achieve the goal of speedy charging with balancing action. In the first stage, a 0.5 C balancing current is used to perform pre-balanced charging on all battery cells until the maximum cell voltage difference is less than 0.05 V, which is required for entry to the second stage of charging. In the second stage, constant current charging of 1 C, coupled with 0.2 C balancing current charging is carried out, until the maximum battery cell voltage reaches 4.2 V, which is required for entry into the third stage of charging. In the third stage, a constant voltage charging is coupled with 0.2 C balancing current charging, until the maximum battery cell voltage reaches 4.25 V, which is required to complete the balancing charge. The imbalance of power between the battery cells during battery pack charging, which reduces battery charging efficiency and battery life, is thus effectively improved. In this paper, a six-cells-in-series and two-in parallel lithium battery pack is used to perform a balancing charge test. Test results show that the battery cells in the battery pack are capable of quickly completing a balancing charge under different initial voltages, the maximum voltage difference is reduced to within the range of 0.05 V, and the total time required for each balancing charge is approximately 3600 s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.