In this paper, we tackle a topology optimization problem which consists in finding the optimal shape of a solid located inside a fluid that minimizes a given cost function. The motion of the fluid is modeled thanks to the Boussinesq system which involves the unsteady Navier-Stokes equation coupled to a heat equation. In order to cover several models presented in the literature, we choose a non-smooth formulation for the outlet boundary conditions. This paper aims at proving existence of solutions to the resulting equations, along with the study of a relaxation scheme of the non-smooth conditions. A second part covers the topology optimization problem itself for which we proved the existence of optimal solutions and provides the definition of first order necessary optimality conditions.