<p style='text-indent:20px;'>We study an optimization problem that aims to determine the shape of an obstacle that is submerged in a fluid governed by the Stokes equations. The mentioned flow takes place in a channel, which motivated the imposition of a Poiseuille-like input function on one end and a do-nothing boundary condition on the other. The maximization of the vorticity is addressed by the <inline-formula><tex-math id="M1">\begin{document}$ L^2 $\end{document}</tex-math></inline-formula>-norm of the curl and the <i>det-grad</i> measure of the fluid. We impose a Tikhonov regularization in the form of a perimeter functional and a volume constraint to address the possibility of topological change. Having been able to establish the existence of an optimal shape, the first order necessary condition was formulated by utilizing the so-called rearrangement method. Finally, numerical examples are presented by utilizing a finite element method on the governing states, and a gradient descent method for the deformation of the domain. On the said gradient descent method, we use two approaches to address the volume constraint: one is by utilizing the augmented Lagrangian method; and the other one is by utilizing a class of divergence-free deformation fields.</p>
We investigate the behavior of dynamic shape design problems for fluid flow at large time horizon. In particular, we shall compare the shape solutions of a dynamic shape optimization problem with that of a stationary problem and show that the solution of the former approaches a neighborhood of that of the latter. The convergence of domains is based on the 𝐿 ∞ -topology of their corresponding characteristic functions, which is closed under the set of domains satisfying the cone property. As a consequence, we show that the asymptotic convergence of shape solutions for parabolic/elliptic problems is a particular case of our analysis. Last, a numerical example is provided to show the occurrence of the convergence of shape design solutions of time-dependent problems with different values of the terminal time 𝑇 to a shape design solution of the stationary problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.