2022
DOI: 10.1007/978-981-16-7618-5_1
|View full text |Cite
|
Sign up to set email alerts
|

A Convolutional Neural Network for Artifacts Detection in EEG Data

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3

Citation Types

0
3
0

Year Published

2022
2022
2023
2023

Publication Types

Select...
1
1
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(3 citation statements)
references
References 15 publications
0
3
0
Order By: Relevance
“…Automation is mainly achieved through channel referencing ( Schlögl et al, 2007 ), by applying various thresholding mechanisms ( Castellanos and Makarov, 2006 ; Gao et al, 2010 ; Nolan et al, 2010 ; Mognon et al, 2011 ; Akhtar et al, 2012 ; Islam and Tcheslavski, 2016 ; Jas et al, 2017 ), or using feature extraction followed by classification with conventional machine-learning algorithms such as support vector machines ( Shoker et al, 2005 ; Halder et al, 2007 ; Shao et al, 2009 ; Gabard-Durnam et al, 2018 ; Sai et al, 2018 ). In recent years, deep-learning algorithms have gained popularity to address EEG signal denoising ( Wang et al, 2018 ; B Yang et al, 2018 ; Craik et al, 2019 ; Pion-Tonachini et al, 2019 ; Roy et al, 2019 ; Sun et al, 2020 ; Boudaya et al, 2022 ; Jurczak et al, 2022 ; Liu et al, 2022 ), providing a more flexible solution than traditional methods by taking advantage of end-to-end learning, i.e., using a single model to act as both feature extractor and classifier. For example, because of hierarchical feature learning, convolutional neural networks (CNNs; LeCun et al, 1989 , 1998 , 2010 , 2015 ) can recognize complex patterns from minimally preprocessed data.…”
Section: Introductionmentioning
confidence: 99%
“…Automation is mainly achieved through channel referencing ( Schlögl et al, 2007 ), by applying various thresholding mechanisms ( Castellanos and Makarov, 2006 ; Gao et al, 2010 ; Nolan et al, 2010 ; Mognon et al, 2011 ; Akhtar et al, 2012 ; Islam and Tcheslavski, 2016 ; Jas et al, 2017 ), or using feature extraction followed by classification with conventional machine-learning algorithms such as support vector machines ( Shoker et al, 2005 ; Halder et al, 2007 ; Shao et al, 2009 ; Gabard-Durnam et al, 2018 ; Sai et al, 2018 ). In recent years, deep-learning algorithms have gained popularity to address EEG signal denoising ( Wang et al, 2018 ; B Yang et al, 2018 ; Craik et al, 2019 ; Pion-Tonachini et al, 2019 ; Roy et al, 2019 ; Sun et al, 2020 ; Boudaya et al, 2022 ; Jurczak et al, 2022 ; Liu et al, 2022 ), providing a more flexible solution than traditional methods by taking advantage of end-to-end learning, i.e., using a single model to act as both feature extractor and classifier. For example, because of hierarchical feature learning, convolutional neural networks (CNNs; LeCun et al, 1989 , 1998 , 2010 , 2015 ) can recognize complex patterns from minimally preprocessed data.…”
Section: Introductionmentioning
confidence: 99%
“…Given the need of neurologists to analyze large amounts of data, efforts have increased towards using various machine learning techniques for handling artifacts in EEG data (Shoker et al 2005; Shao et al 2008; Barua and Begum, 2014; Pardede et al, 2015; Radüntz et al, 2015; Yang et al, 2016, 2018; Sai et al, 2017; Wang et al, 2017; Craik et al, 2019; Roy et al, 2019; Sun et al, 2020; Boudaya et al, 2022; Jurczak et al, 2022; Liu et al, 2022; Diachenko, M., Houtman, S. J., Juarez-Martinez, E. L., Ramautar, J. R., Weiler, R., Mansvelder, H. D., Bruining, H., Bloem, P., & Linkenkaer-Hansen K. (2022). Improved manual annotation of EEG signals through convolutional neural network guidance.…”
Section: Introductionmentioning
confidence: 99%
“…Examples of machine learning techniques applied in artifact detection are support vector machines (SVMs) (Shoker et al 2005; Shao et al 2008; Bartels et al, 2010; Sai et al, 2017), k-nearest neighbor classifiers (k-NN) (Gao et al, 2010), and independent component analysis (ICA) (Barua and Begum, 2014; Radüntz et al, 2015). Recently, efforts have focused on developing deep-learning solutions for artifact detection (Pardede et al, 2015; Craik et al, 2019; Roy et al, 2019; Sun et al, 2020; Boudaya et al, 2022; Jurczak et al, 2022; Liu et al, 2022; Diachenko, M., Houtman, S. J., Juarez-Martinez, E. L., Ramautar, J. R., Weiler, R., Mansvelder, H. D., Bruining, H., Bloem, P., & Linkenkaer-Hansen K. (2022). Improved manual annotation of EEG signals through convolutional neural network guidance.…”
Section: Introductionmentioning
confidence: 99%