Superconductor-based light-emitting diode (superconductor-based LED) in strong lightconfinement regime are characterized as a superconductor-based three-terminal device, and its transport properties are quantitatively investigated. In the gate-controlled region, we confirm the realization of new-type Josephson field effect transistor (JoFET) performance, where the channel cross-sectional area of the junction is directly modulated by the gate voltage. In the current-injected region, the superconducting critical current of µA order in the Josephson junction is found to be modulated by the steady current injection of pA order. This ultrahigh monitoring sensitivity of the radiative recombination process can be explained by taking into account the fact that the energy relaxation of the absorbed photons causes the conversion of superconducting pairs to quasiparticles in the active layer. Using quasiparticle density and superconducting pair density, we discuss the carrier flows together with the non-equilibrium superconductovity in the active layer and the superconducting electrodes, which take place for compensating the conversion.