In this paper, two regional robust secure precise wireless transmission (SPWT) schemes for multi-user unmanned aerial vehicle (UAV): 1)regional signal-to-leakage-and-noise ratio (SLNR) and artificial-noise-to-leakage-and-noise ratio (ANLNR) (R-SLNR-ANLNR) maximization and 2) point SLNR and ANLNR (P-SLNR-ANLNR) maximization, are proposed to tackle with the estimation errors of the target users’ location. In the SPWT system, the estimation error for SPWT cannot be ignored. However the conventional robust methods in secure wireless communications optimize the beamforming vector in the desired positions only in statistical means and cannot guarantee the security for each symbol. The proposed regional robust schemes are designed for optimizing the secrecy performance in the whole error region around the estimated location. Specifically, with the known maximal estimation error, we define the target region and wiretap region. Then design an optimal beamforming vector and an artificial noise projection matrix, which achieve the confidential signal in the target area having the maximal power while only few signal power is conserved in the potential wiretap region. Instead of considering the statistical distributions of the estimated errors into optimization, we optimize the SLNR and ANLNR of the whole target area, which significantly decreases the complexity. Moreover, the proposed schemes can ensure that the desired users are located in the optimized region, which are more practical than the conventional methods. Simulation results show that our proposed regional robust SPWT design is capable of substantially improving the secrecy rate compared to the conventional non-robust method. The P-SLNR-ANLNR maximization-based method has the comparable secrecy performance with lower complexity than that of the R-SLNR-ANLNR maximization-based method.