The CRISPR-Cas system has rapidly reached a huge popularity as a new, powerful method for precise DNA editing and genome reengineering. In Synthetic Biology, the CRISPR-Cas type II system has inspired the construction of a novel class of RNA-based transcription factors. In their simplest form, they are made of a CRISPR RNA molecule, which targets a promoter sequence, and a deficient Cas9 (i.e. deprived of any nuclease activity) that has been fused to an activation or a repression domain. Up-and downregulation of single genes in mammalian and yeast cells have been achieved with satisfactory results. Moreover, the construction of CRISPR-based transcription factors is much simpler than the assembly of synthetic proteins such as the Transcription Activator-Like effectors. However, the feasibility of complex synthetic networks fully based on the CRISPR-dCas9 technology has still to be proved and new designs, which take into account different CRISPR types, shall be investigated.