Mesoporous photocatalysts have gained tremendous attention in the last decade by demonstrating that increased surface area and porosity can strongly improve their performance. In fact, all reports on mesoporous semiconductors corroborate this scenario. But is it possible to quantify and compare the reported advantages of the mesopores and the increased surface area between different works? In this contribution, we present a model that can evaluate the improvements in photocatalytic activity achieved by the introduction of mesoporosity independent on synthetic or test conditions.We exemplify this methodology focusing on photocatalytic hydrogen/oxygen evolution with sacrificial reagents, but also include examples of CO2 reduction and electrocatalysis.By correlating the relative increase in surface area to the relative increase in activityin comparison to non-porous counterpartswe show that the origin of mesoporosity can have a pronounced influence on the activity enhancement, and that different semiconductor materials behave quite differently. Our model can serve as a starting point for the community to extract and compare key information on mesoporous photocatalysts, to put results into context of existing data, and to compare the performances of various catalytic systems much better.