2015
DOI: 10.4067/s0717-97072015000300018
|View full text |Cite
|
Sign up to set email alerts
|

A Cu(II) POLYMERIC COMPLEX SURVEYING TRIETHANOLAMINE AND 1,2-DI(4-PYRIDYL)ETHYLENE AS BRIDGING LIGANDS

Abstract: We report the synthesis and crystal structure of a copper (II) polymeric complex (I) prepared by reaction of Cu(ClO 4 ) 2 ·5H 2 O with H 3 tea (triethanolamine,) and dpe (1,2-di(4-pyridyl)

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
3
0

Year Published

2016
2016
2020
2020

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(3 citation statements)
references
References 9 publications
0
3
0
Order By: Relevance
“…Moreover, the diverse structural feature of metal-TEA complexes can be attributed to the deprotonation of the ethanolic protons while coordinating with metals. For example, different levels of deprotonation at TEA ligand in the Cu-TEA-1,2-di(4-pyridyl) ethylene complex leads to different coordination modes [24]. Thereby, in-depth study of crystal structures and characteristic features of the metal-TEA complexes is essential for further use in the desired applications.…”
Section: Introductionmentioning
confidence: 99%
“…Moreover, the diverse structural feature of metal-TEA complexes can be attributed to the deprotonation of the ethanolic protons while coordinating with metals. For example, different levels of deprotonation at TEA ligand in the Cu-TEA-1,2-di(4-pyridyl) ethylene complex leads to different coordination modes [24]. Thereby, in-depth study of crystal structures and characteristic features of the metal-TEA complexes is essential for further use in the desired applications.…”
Section: Introductionmentioning
confidence: 99%
“…The interaction of metal ions with TEA results in the formation of complexes in which TEA demonstrates monodentate (Kumar et al, 2014), bidentate (Kapteijn et al, 1997;Long et al, 2004), tridentate (Gao et al, 2004;Ucar et al, 2004;Krabbes et al, 1999;Haukka et al, 2005;Yeşilel et al, 2004;Mirskova et al, 2013) or tetradentate binding modes (Zaitsev et al, 2014;Kazak et al, 2003;Yilmaz et al, 2004;Rickard et al, 1999;Maestri & Brown, 2004;Kovbasyuk et al, 2001;Tudor et al, 2001). In some complexes, TEA has bridging properties (Langley et al, 2011;Atria et al, 2015;Wittick et al, 2006;Sharma et al, 2014;Yang et al, 2014;Funes et al, 2014). In addition, there are metal complexes known in which TEA molecules are uncoordinating (Ilyukhin et al, 2013;Manos et al, 2012).…”
Section: Chemical Contextmentioning
confidence: 99%
“…The interaction of metal ions with TEA results in the formation of complexes in which TEA demonstrates monodentate (Kumar et al, 2014), bidentate (Kapteijn et al, 1997), tridentate (Gao et al, 2004;Ucar et al, 2004;Topcu et al, 2001;Krabbes et al, 1999;Haukka et al, 2005;Yeşilel et al, 2004;Mirskova et al, 2013) and tetradentate binding (Zaitsev et al, 2014;Kazak et al, 2003;Yilmaz et al, 2004;Langley et al, 2011;Rickard et al, 1999;Maestri & Brown, 2004;Kovbasyuk et al, 2001;Tudor et al, 2001). In some complexes, TEA can show bridging properties (Atria et al, 2015;Wittick et al, 2006;Sharma et al, 2014;Yang et al, 2014;Funes et al, 2014). Here, we report the synthesis and structure of the title compound, [Co(C 6 H 15 NO 3 ) 2 ](C 9 H 6 NO 3 S) 2 , (I).…”
Section: Chemical Contextmentioning
confidence: 99%