The need for data analysis in tertiary education every semester is needed, this is due to the increasingly large and uncontrolled data, on the other hand generally higher education does not yet have a data warehouse and big data analysis to maintain data quality at tertiary institutions is not easy, especially to estimate the results of university accreditation high, because the data continues to grow and is not controlled, the purpose of this study is to apply k-medoids clustering by applying the calculation of the weighting matrix of higher education accreditation with the data of the last 3 years namely length of study, average GPA, student and lecturer ratio and the number of lecturers according to the study program, so that it can predict accurate cluster results, the results of this study indicate that k-medoid clustering produces good cluster data results with an evaluation value of the Bouldin index davies cluster index of 0.407029478 and is said to be a good cluster result.