2019
DOI: 10.1038/s41597-019-0206-3
|View full text |Cite
|
Sign up to set email alerts
|

A database for using machine learning and data mining techniques for coronary artery disease diagnosis

Abstract: We present the coronary artery disease (CAD) database, a comprehensive resource, comprising 126 papers and 68 datasets relevant to CAD diagnosis, extracted from the scientific literature from 1992 and 2018. These data were collected to help advance research on CAD-related machine learning and data mining algorithms, and hopefully to ultimately advance clinical diagnosis and early treatment. To aid users, we have also built a web application that presents the database through various reports.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
43
0
3

Year Published

2019
2019
2023
2023

Publication Types

Select...
5
4

Relationship

0
9

Authors

Journals

citations
Cited by 87 publications
(46 citation statements)
references
References 48 publications
0
43
0
3
Order By: Relevance
“…The gold standard for the diagnosis of coronary heart disease has been coronary angiography, which has high sensitivity and specificity. However, due to its complicated operation, high economic cost and invasive detection, many patients have low acceptance (3). At present, coronary stent implantation is a vital interventional method in treating coronary heart disease, which mainly improves myocardial blood supply by reconstructing narrow lumen, thus achieving the purpose of treatment (4).…”
Section: Introductionmentioning
confidence: 99%
“…The gold standard for the diagnosis of coronary heart disease has been coronary angiography, which has high sensitivity and specificity. However, due to its complicated operation, high economic cost and invasive detection, many patients have low acceptance (3). At present, coronary stent implantation is a vital interventional method in treating coronary heart disease, which mainly improves myocardial blood supply by reconstructing narrow lumen, thus achieving the purpose of treatment (4).…”
Section: Introductionmentioning
confidence: 99%
“…Ten-fold cross-validation was used on the extracted data to evaluate the performance of the algorithms. We used the accuracy, sensitivity, specificity, and area under the curve (AUC) of the algorithms for their performance comparison [54][55][56]. The accuracy of these algorithms is shown in Table 2.…”
Section: Resultsmentioning
confidence: 99%
“…Prediksi penyakit jantung adalah salah satu area yang tumbuh untuk prediksi tersebut. [1] [2] Kekurangan Dokter, ahli dan mengabaikan gejala pasien menyebabkan tantangan besar yang dapat menyebabkan kematian, cacat bagi pasien. Oleh karena itu diperlukan sistem pakar yang berfungsi sebagai alat analisis untuk menemukan informasi dan pola tersembunyi dalam data medis penyakit dengar.…”
Section: Pendahuluanunclassified
“…Dengan menggunakan data mining pada aplikasi orange bersama dengan metode eksplorasi lainnya. Dataset terdiri 14 atribut terdiri dari data nominal dan numerik, target kelas data set ini adalah tidak adanya (0) dan adanya penyakit jantung (1). Hasil perbandingan menunjukkan bahwa dalam penggunaan algoritma klasifikasi data mining yang digunakan yaitu Algoritma Naive Bayes, Random Forest, Neural Network dapat kita lihat bahwa algoritma Naive Bayes adalah algoritma yang tepat dan akurat digunakan untuk dapat melakukan prediksi penderita penyakit jantung dengan persentase sebesar 83 %.…”
Section: Kesimpulanunclassified