2020
DOI: 10.30871/jaic.v4i1.2152
|View full text |Cite
|
Sign up to set email alerts
|

Perbandingan Kinerja Algoritma untuk Prediksi Penyakit Jantung dengan Teknik Data Mining

Abstract: Heart disease is a disease that contributes to a relatively high mortality rate. The rate of human death caused by disease in the heart is a widespread problem in the world. The main objective of this study is to predict people with heart disease using the publicly available dataset in the UCI Repository with the Heart Disease dataset. To obtain the best classification algorithm is by comparing three Algoritma Naive Bayes, Random Forest, Neural Network algorithms, which are frequently used to predict people wi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
2
0
11

Year Published

2021
2021
2024
2024

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 11 publications
(13 citation statements)
references
References 5 publications
0
2
0
11
Order By: Relevance
“…Regarding the measurement of performance models, here are some performance metrics that are commonly and often used [25] and can be obtained through the Naïve Bayes algorithm using the Orange application. 1) Accuracy.…”
Section: Methodsmentioning
confidence: 99%
“…Regarding the measurement of performance models, here are some performance metrics that are commonly and often used [25] and can be obtained through the Naïve Bayes algorithm using the Orange application. 1) Accuracy.…”
Section: Methodsmentioning
confidence: 99%
“…Ini mengarah pada pemeliharaan data pasien setiap hari. Metode penambangan data diterapkan guna mengekstraksi informasi serta memprediksi penyakit di masa depan dari data yang disimpan (Derisma, 2020).…”
Section: Pendahuluanunclassified
“…Dan TN yaitu jumlah data bernilai negatif dan hasil prediksi negati [3]. Confusion matrix terdiri dari beberapa perhitungan [16]:…”
Section: E Confussion Matrixunclassified
“…Presisi merupakan perhitungan untuk mengetahui jumlah data yang benar positif dari semua hasil prediksi benar positif. Presisi dapat dilakukan menggunakan Persamaan (5) [15][3] [16].…”
Section: Presisiunclassified