2020
DOI: 10.1016/j.cell.2020.04.001
|View full text |Cite
|
Sign up to set email alerts
|

A Deep Learning Approach to Antibiotic Discovery

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

4
86
0
2

Year Published

2020
2020
2024
2024

Publication Types

Select...
8
1
1

Relationship

0
10

Authors

Journals

citations
Cited by 138 publications
(92 citation statements)
references
References 0 publications
4
86
0
2
Order By: Relevance
“…Digital technologies such as whole-genome sequencing, machine learning, mass spectrometry and predictive modeling are likely to transform the clinical management of bacterial infections in the coming decades. Exciting developments in machine learning are, for the first time, enabling the rapid discovery of novel classes of antimicrobial compounds ( 75 ) and the rapid identification of bacterial pathogens in the clinic ( 5 ). Advances in mass spectrometry-based metabolomics are enabling the rapid discovery of antimicrobial mechanisms of action ( 76 ).…”
Section: Discussionmentioning
confidence: 99%
“…Digital technologies such as whole-genome sequencing, machine learning, mass spectrometry and predictive modeling are likely to transform the clinical management of bacterial infections in the coming decades. Exciting developments in machine learning are, for the first time, enabling the rapid discovery of novel classes of antimicrobial compounds ( 75 ) and the rapid identification of bacterial pathogens in the clinic ( 5 ). Advances in mass spectrometry-based metabolomics are enabling the rapid discovery of antimicrobial mechanisms of action ( 76 ).…”
Section: Discussionmentioning
confidence: 99%
“…With only a handful of antibiotic target proteins, bacteria are only a few genetic mutations away from becoming completely resistant to several antibiotic molecules. As such, the antibiotic resistance crisis will likely not be solved by developing the next novel antibiotic molecule 3 , 4 . Therefore, understanding the mechanisms of antibiotic resistance and developing strategies to counteract the evolution of antibiotic resistance will be crucial to combat this public health predicament.…”
Section: Introductionmentioning
confidence: 99%
“…Das bildet -stark vereinfacht gesprochen -eine Abstraktion der vielen Inputs auf allgemeinere Begriffe nach. Diese Netzwerke sind komplexer zu trainieren ("back-propagation" und andere Schritte), schaffen aber, oft mit weiteren Strategien aus der künstlichen Intelligenzforschung weiter verbessert, auch Erstaunliches, etwa optische Bilderkennung von Leukämiezellen durch verbesserte Schwarmoptimierung (Sahlol et al 2020) oder die automatische Erkennung der Sekundärstruktur und von Oligonukleotiden in elektronenmikroskopischen Aufnahmen (Mostosi et al 2020), sodass mit diesem Deep learning Ansatz schließlich sogar Antibiotika entdeckt werden können (Stokes et al 2020) oder die Energiepotentiale und damit auch die dreidimensionale Struktur von Proteinen (Senior et al 2020).…”
Section: Tp+fn Tp+fp+tn+fnunclassified