2022
DOI: 10.1101/2022.09.18.508405
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

A deep learning workflow for quantification of Micronuclei in DNA damage studies in cultured cancer cell lines: a proof of principle investigation

Abstract: The cytokinesis block micronucleus assay is widely used for measuring/scoring/counting micronuclei, a marker of genome instability in cultured and primary cells. Though a gold standard method, this is a laborious and time-consuming process with person-to-person variation observed in quantification of micronuclei. We report in this study the utilisation of a new deep learning workflow for detection of micronuclei in DAPI stained nuclear images. The proposed deep learning framework achieved an average precision … Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 38 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?