The cytokinesis block micronucleus assay is widely used for measuring/scoring/counting micronuclei, a marker of genome instability in cultured and primary cells. Though a gold standard method, this is a laborious and time-consuming process with person-to-person variation observed in quantification of micronuclei. We report in this study the utilisation of a new deep learning workflow for detection of micronuclei in DAPI stained nuclear images. The proposed deep learning framework achieved an average precision of >90% in detection of micronuclei. This proof of principle investigation in a DNA damage studies laboratory supports the idea of deploying AI powered tools in a cost-effective manner for repetitive and laborious tasks with relevant computational expertise. These systems will also help improving the quality of data and wellbeing of researchers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.