Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This article explores some properties of degenerate hypergeometric Bernoulli polynomials, which are defined through the following generating function t m e λ x ( t ) e λ x ( t ) - ∑ l = 0 m - 1 ( 1 ) l , λ t l l ! = ∑ n = 0 ∞ B n , λ [ m - 1 ] ( x ) t n n ! , | t | < min { 2 π , 1 | λ | } , λ ∈ ℝ \ { 0 } . {{{t^m}e_\lambda ^x\left( t \right)} \over {e_\lambda ^x\left( t \right) - \sum\nolimits_{l = 0}^{m - 1} {\left( 1 \right)l,\lambda{{{t^l}} \over {l!}}} }} = \sum\limits_{n = 0}^{^\infty } {B_{n,\lambda }^{\left[ {m - 1} \right]}} \left( x \right){{{t^n}} \over {n!}},\,\,\,\,\left| t \right| < \min \left\{ {2\pi ,{1 \over {\left| \lambda \right|}}} \right\},\lambda \in \mathbb{R}\backslash \left\{ 0 \right\}. We deduce their associated summation formulas and their corresponding determinant form. Also we focus our attention on the zero distribution of such polynomials and perform some numerical illustrative examples, which allow us to compare the behavior of the zeros of degenerate hypergeometric Bernoulli polynomials with the zeros of their hypergeometric counterpart. Finally, using a monomiality principle approach we present a differential equation satisfied by these polynomials.
This article explores some properties of degenerate hypergeometric Bernoulli polynomials, which are defined through the following generating function t m e λ x ( t ) e λ x ( t ) - ∑ l = 0 m - 1 ( 1 ) l , λ t l l ! = ∑ n = 0 ∞ B n , λ [ m - 1 ] ( x ) t n n ! , | t | < min { 2 π , 1 | λ | } , λ ∈ ℝ \ { 0 } . {{{t^m}e_\lambda ^x\left( t \right)} \over {e_\lambda ^x\left( t \right) - \sum\nolimits_{l = 0}^{m - 1} {\left( 1 \right)l,\lambda{{{t^l}} \over {l!}}} }} = \sum\limits_{n = 0}^{^\infty } {B_{n,\lambda }^{\left[ {m - 1} \right]}} \left( x \right){{{t^n}} \over {n!}},\,\,\,\,\left| t \right| < \min \left\{ {2\pi ,{1 \over {\left| \lambda \right|}}} \right\},\lambda \in \mathbb{R}\backslash \left\{ 0 \right\}. We deduce their associated summation formulas and their corresponding determinant form. Also we focus our attention on the zero distribution of such polynomials and perform some numerical illustrative examples, which allow us to compare the behavior of the zeros of degenerate hypergeometric Bernoulli polynomials with the zeros of their hypergeometric counterpart. Finally, using a monomiality principle approach we present a differential equation satisfied by these polynomials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.