2004
DOI: 10.1002/chem.200400383
|View full text |Cite
|
Sign up to set email alerts
|

A Density Functional Study on a Biomimetic Non‐Heme Iron Catalyst: Insights into Alkane Hydroxylation by a Formally HOFeVO Oxidant

Abstract: The reactivity of [HO-(tpa)Fe(V)=O] (TPA=tris(2-pyridylmethyl)amine), derived from O-O bond heterolysis of its [H(2)O-(tpa)Fe(III)-OOH] precursor, was explored by means of hybrid density functional theory. The mechanism for alkane hydroxylation by the high-valent iron-oxo species invoked as an intermediate in Fe(tpa)/H(2)O(2) catalysis was investigated. Hydroxylation of methane and propane by HO-Fe(V)=O was studied by following the rebound mechanism associated with the heme center of cytochrome P450, and it is… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

8
73
0
5

Year Published

2005
2005
2015
2015

Publication Types

Select...
8

Relationship

1
7

Authors

Journals

citations
Cited by 81 publications
(86 citation statements)
references
References 52 publications
8
73
0
5
Order By: Relevance
“…[7,8] The corresponding sextet and doublet states of HOÀFe V =O lie more than 10 kcal mol À1 higher in energy than the quartet ground state. [9] Further DFT calculations presented herein provide new insight into how this unique oxidant can carry out both olefin epoxidation and cis-dihydroxylation. Hence, the present study focuses on the subsequent reaction of 2 with olefins (see the Supporting Information) to reveal that olefin epoxidation and cis-dihydroxylation in fact represent different faces of the same oxidant.…”
mentioning
confidence: 97%
“…[7,8] The corresponding sextet and doublet states of HOÀFe V =O lie more than 10 kcal mol À1 higher in energy than the quartet ground state. [9] Further DFT calculations presented herein provide new insight into how this unique oxidant can carry out both olefin epoxidation and cis-dihydroxylation. Hence, the present study focuses on the subsequent reaction of 2 with olefins (see the Supporting Information) to reveal that olefin epoxidation and cis-dihydroxylation in fact represent different faces of the same oxidant.…”
mentioning
confidence: 97%
“…This may explain the diversity of alkane hydroxylation reaction mechanisms found in the literature. 23,25,29,30 For this reason, we studied the gas-phase hydroxylation mechanisms of methane and cyclohexane and we compared them with those obtained in solution.…”
Section: Comparison Between Gas-phase and Solvent-phase Mechanismsmentioning
confidence: 99%
“…[139,140] Eisen wird entweder mit dem tripodalen vierzähnigen N 4 -Liganden Tris(2-pyridylmethyl)amin (TPA) [134] oder durch das lineare N,N'-Bis(2-pyridylmethyl)-N,N'-dimethyl-1,2-diaminoethan [141] [140,[142][143][144] Für diese Katalysatoren gibt es fast keine Daten zur Oxidation anderer Substrate als Cyclohexan und Adamantan. Da die C-H-Bindungsdissoziationsenergie von Cyclohexan mit 99 kcal mol À1 [145] vergleichbar ist mit der von sekundären C-H-Bindungen in linearen Alkanen, [146] macht eine Extrapolation der katalytischen Aktivität dieser Substrate trotzdem Sinn.…”
Section: Biomimetische Einkernige Nicht-häm-eisenkomplexeunclassified
“…[146] Bei der Modellierung der Reaktivität der hochwertigen Eisen-Oxo-Spezies [HO-(TPA)Fe V = O] mit Propan und Methan nach dem Häm-Mechanismus [147] ist die berechnete Aktivierungsenergie für die Wasserstoffabspaltung von der primären C-H-Bindung in Methan zu hoch für diesen Katalysator. Dagegen wäre die homolytische Spaltung von sekundären C-H-Bindungen in Propan durch die reaktive Spezies, die zu 2-Propanol führen würde, experimentell machbar.…”
Section: Biomimetische Einkernige Nicht-häm-eisenkomplexeunclassified