The present theoretical study aims at investigating the effects of an argon matrix on the structures, energetics, dynamics, and infrared (IR) spectra of small water clusters (H2O)n (n = 1-6). The potential energy surface is obtained from a hybrid self-consistent charge density functional-based tight binding/force-field approach (SCC-DFTB/FF) in which the water clusters are treated at the SCC-DFTB level and the matrix is modeled at the FF level by a cluster consisting of ∼340 Ar atoms with a face centered cubic (fcc) structure, namely (H2O)n/Ar. With respect to a pure FF scheme, this allows a quantum description of the molecular system embedded in the matrix, along with all-atom geometry optimization and molecular dynamics (MD) simulations of the (H2O)n/Ar system. Finite-temperature IR spectra are derived from the MD simulations. The SCC-DFTB/FF scheme is first benchmarked on (H2O)Arn clusters against correlated wave function results and DFT calculations performed in the present work, and against FF data available in the literature. Regarding (H2O)n/Ar systems, the geometries of the water clusters are found to adapt to the fcc environment, possibly leading to intermolecular distortion and matrix perturbation. Several energetical quantities are estimated to characterize the water clusters in the matrix. In the particular case of the water hexamer, substitution and insertion energies for the prism, bag, and cage are found to be lower than that for the 6-member ring isomer. Finite-temperature MD simulations show that the water monomer has a quasifree rotation motion at 13 K, in agreement with experimental data. In the case of the water dimer, the only large-amplitude motion is a distortion-rotation intermolecular motion, whereas only vibration motions around the nuclei equilibrium positions are observed for clusters with larger sizes. Regarding the IR spectra, we find that the matrix environment leads to redshifts of the stretching modes and almost no shift of the bending modes. This is in agreement with experimental data. Furthermore, in the case of the water monomer and dimer, the magnitudes of the computed shifts are in fair agreement with the experimental values. The complex case of the water hexamer, which presents several low-energy isomers, is discussed.