Th e s hea r modulu s G = 5.925 X 10 -3(Jp -0.45) T + G* Wa rt I), it s e ne rgy co mpon e nt G * = 0.0684 (jjJ -0.45) +2.70 W a rt 11 ), and th e numbe r of e ffec ti ve s ub-c ha in s pe r unit volum e Ve= (G -G* )IRT a re giv e n de tail ed mo lec ul a r consid e ra tio n. G is give n in Mdyn c m -2 for rubbe r cross-link ed by addin g p parts of di c umyl pe roxid e pe r hundre d of rubbe r, and heatin g until a fr ac ti on f of th e pero xid e is dec o mpose d. v" is fo und to be a pproximate ly twi ce th e de ns it y of c ross-link s, afte r a co rrecti o n for impuriti es a nd c ha in end s is mad e . It ca n not be co mputed as GI RT, s in ce on ly th e e ntropy co mpo ne nt of 1110dulu s is re lat e d to li e . Th e s ub-c ha in s fo r th e most hi ghl y cross -link ed rubber s s tudi ed had a m olec ul a r weight of abou t 575 g 11101 -' , corres po ndin g to abo ut 8 iso pre ne unit s . The modulus corres pondin g to no add ed c ross-link s is not ze ro. It is d ete rmin ed c hi e fiy by th e e ner gy compo ne nt of th e modulu s; it d oes not arise from entan gle me nts. Th e " front fa c tor" is found to be unity.An e xt e ns ive literature s urve y yie ld s valu es of the q uant it y RN (v,), whe re \jI (V2) is th e FloryRe llll e r e quation fun c tion of v" th e e quilibrium volume fra cti on ob tain ed by s we llin g th e c ross -linke d rubbe r. RT\jI (v,) is found to be grea te r th an G -G*, but not as large a s G it se lf. Ke y word s: C ross-li nk in g of rubb e r; di c um yl pe roxide ; e lasti c it y th eo ry of rub ber: e nta ngle me nt s in rubbe r; gel point ; molec ular int er pretation of rubbe r e las ti c ity ; modulu s of rubbe r ; rubbe r elas ti c it y; s tati sti c al th eor y of rubbe r elas ti c ity; s we llin g of rubbe r ne t wo rk.
. IntroductionThe fir st paper in thi s series Part I [1] I presented experimen tal data on th e c han ge of modulus with temperature and cross -linkin g for natural rubbe r cross-linked by dicumyl peroxide ,The results we re presented in th e form of the following equation: The present paper makes much more de tailed molecular interpretations of the results than the second paper and e xamines the conseque nces of several refin e ments which might be mad e in the application of the theory,
G=S (jp + B)T + H(fp +B